
Copyright © Siemens AG 2009. All rights reserved.

Corporate Technology

Advanced Test-Driven Development
Quality Engineered Software and Testing Conference

QUEST 2009
Chicago, IL, USA

Peter Zimmerer
Principal Engineer

Siemens AG, CT SE 1
Corporate Technology

Corporate Research and Technologies
Software & Engineering, Development Techniques

81739 Munich, Germany
peter.zimmerer@siemens.com

http://www.siemens.com/research-and-development/
http://www.ct.siemens.com/

Page 2 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Contents

Introduction
Test-driven development (TDD)
Design for testability
Preventive testing

Five lessons learned and limitations

Experiences

Summary

Page 3 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Introduction Test-driven Development (TDD)

Kent Beck:
Never write a single line of code
unless you have a failing automated test
Eliminate duplication

3 steps:
Write a test that fails
Write necessary code to pass the test
Refactor the code

Related terms: test-first development, test-first programming
TDD = test-first development ⊕ refactoring
(see http://www.agiledata.org/essays/tdd.html)

Write a testWrite a test Write the codeWrite the code RefactorRefactor

I’M TEST-DRIVENI’M TEST-DRIVEN

Page 4 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Typical usage of TDD

Unit testing by the programmers – very popular
xUnit tools (http://www.xprogramming.com/software.htm)
E.g. JUnit (http://www.junit.org/) (new version 4.0 available since 02/16/06)

Acceptance testing to enhance customer involvement
Fit, acceptance testing framework by Ward Cunningham and others
(Framework for Integrated Test, http://fit.c2.com/)

Tests are specified as HTML tables (created by Excel, Word, etc.)

Fixtures act as the glue between the written tests and the application’s code

Ideal for data-centric tests where each test does the same kind of thing to different kinds of data

Available in different languages (Java, C++, C#, Python, Perl, Ruby, …)

FitNesse, a fully integrated standalone wiki and acceptance testing framework
(based on Fit) by Robert C. Martin and Micah D. Martin (http://fitnesse.org/)
FitLibrary, a set of fixtures and runners that extend Fit
(http://sourceforge.net/projects/fitlibrary)
Others: see http://www.xprogramming.com/software.htm
(main focus is on web testing over HTTP)

Page 5 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Design for testability

Visibility / observability
Ability to observe the outputs, states, internals, resource usage, and
other side effects of the software under test

Control(lability)
Ability to apply inputs to the software under test or place it in
specified states (for example reset to start state)

How?
Suitable testing architecture
Additional (scriptable) interfaces for testing purposes
Interaction with the system under test through well-defined observation
points and control points
Coding guidelines, naming conventions
Built-in self-test
Consistency checks (assertions, design by contract)
Logging and tracing, diagnosis and dump utilities (internal states)
Think test-first: how can I test this?

Page 6 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

TDD ≈ Preventive Testing (1)

Preventive testing is built upon the observation that
one of the most effective ways of specifying something is
to describe (in detail) how you would accept (test) it
if someone gave it to you.

David Gelperin, Bill Hetzel (<1990)

Given any kind of specification for a product,
the first thing to develop isn't the product,
but how you'd test the product.
Don’t start to build a product
till you know how to test it.

Tom Gilb

The act of designing tests is one of the
most effective bug preventers known.

Boris Beizer, 1983

Page 7 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

TDD ≈ Preventive Testing (2)

Use testing to discover, identify, create, specify, influence, and
control requirements, architecture, design, implementation,
deployment, and maintenance artifacts:

Testware development leads software development

A requirement / architecture / design / implementation / deployment
cannot be accepted unless it also specifies exactly what tests will
be run to check it

The idea of TDD is
Nothing actually new
Nothing new brought to us by XP or agile methods and the hype around it
Rather an old idea …

Page 8 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Some references

D. Gelperin, B. Hetzel, The Growth of Software Testing,
Communications of the ACM, Vol. 31, Issue 6, June 1988, pp. 687-695.
Research 1: B. George and L. Williams,
A Structured Experiment of Test-Driven Development,
Information and Software Technology, Vol. 46, No. 5, 2003, pp. 337-342.
Research 2: E. Maximilien and L. Williams,
Assessing Test-Driven Development at IBM,
Proceedings of the 25th International Conference on Software Engineering
(ICSE 03), IEEE CS Press, 2003, pp. 564-569.
Research 3: L. Williams, E. Maximilien and M. Vouk,
Test-Driven Development as a Defect-Reduction Practice,
Proceedings of the 14th International Symposium on Software Reliability
Engineering (ISSRE 03), IEEE CS Press, 2003, pp. 34-45.
D. Janzen and H. Saiedian,
Test-Driven Development: Concepts, Taxonomy, and Future Direction,
IEEE Computer, Vol. 38, No. 9, September 2005, pp. 43-50.
D. Janzen and H. Saiedian,
Does Test-Driven Development Really Improve Software Design Quality?
IEEE Software, Vol. 25, No. 2, March 2008, pp. 77-84.

Page 9 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Data on TDD research in the industry

Research (see references on previous slide)
1. controlled experiment, 3 companies, 24 programmers
2. case study, 1 company, 9 programmers
3. case study, 1 company, 9 programmers

Results: Quality – Productivity
1. 18% more tests passed – TDD took 16% longer
2. 50% reduction in defect density – minimal impact
3. 40% reduction in defect density – no change

In two studies, programmers were new to TDD.
TDD seems to improve quality without damage for productivity.
The productivity gap for the first experiment is explained by the fact
that the other group wrote far fewer tests than the TDD group.

See also summary of selected empirical studies of test-driven development
in IEEE Software, Vol. 24, No. 3, May / June 2007, pp. 24-30.

Page 10 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

TDD – Example: Requirements

Automated teller machine (ATM):
A valid user must be able to withdraw up to $200
or the maximum amount in the account.

The first two high level test cases
TC1: Withdraw $200 from an account with $165 in it. Result ???
TC2: Withdraw $168.46 from an account with $200 in it. Result ???

already help us to discover two ambiguities in the requirements:

…so already help us to identify / create essential additional requirements!

R. Craig, S.P. Jaskiel
Systematic Software Testing

Some people will interpret it to mean that the ATM user
can withdraw the lesser of the two values ($165),
while other people will interpret it to mean they
can withdraw the greater of the two values ($200).

Does the bank want
the ATM to dispense
coins to the users???

Page 11 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Example: Non-functional requirements (NFR)

Often it seems that NFR are difficult to specify well
This means that NFR are also difficult to test

We can see the cost when we get it wrong
The costs of building in NFRs and testing NFR late in a project
Many examples where getting NFR and/or testing NFR wrong has
been disastrous

NFRs are the prime driver for the architecture
If we decide to test the architecture, we have to test NFR

Early tests for NFR will influence
and change the architecture to be
developed TDD

Page 12 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

TDD as a requirements engineering technique

Surprisingly, to some people, one of the most effective ways of
testing requirements is with test cases very much like those for
testing the completed system.
… write these tests when gathering, analyzing, and verifying
requirements – long before those requirements are coded

Donald C. Gause and Gerald M. Weinberg, 1989

Writing requirements and testing are interrelated,
much like the two sides of a Möbius strip.
Equivalence hypothesis:
As formality increases, tests and requirements become
indistinguishable. At the limit, tests and requirements are
equivalent.

Robert C. Martin, Grigori Melnik, 2008
IEEE Software, Vol. 25, No. 2, Jan/Feb 2008, pp. 54-59

Page 13 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

In contrast – TDD is not …

Step 1: Create UML class diagrams

Step 2: Generate "header" files with
all interfaces (method signatures)

Step 3: Implement (unit) tests

Step 4: Implement "body" files of system under test
(implementation of methods)

Real TDD means to let testing
drive and influence your
architecture and design:
For example creation of test
cases to identify and specify
required interfaces, parameter
types, etc. in the UML model.

Page 14 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Lesson 1 – Preventive testing: Comprehensive view of TDD

TDD = Test-first design ⊕ test-first implementation ⊕ refactoring
Including early creation of abstract non-executable test cases as well
as detailed implemented and executable test cases

TDD is possible and strictly recommended on every test level,
not only for unit and acceptance testing (preventive testing)!
Emphasizes the importance and benefits of early testing activities.

Building the test specification is testing
Tests represent a set of executable specifications
Proactive design for testability

These things are NOT actually new and are already well known for a
long time.
What‘s new is that these things are more and more really used in
projects today. From my point of view that‘s the real big benefit of
the TDD-hype brought to us by XP and agile methods.

Page 15 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Lesson 2 – Test-first implementation

Not always 100% possible in real life
Usage can be costly and time-consuming dependent on what test
environment (e.g. by creating and maintaining mock objects) is needed
Legacy code with low testability
GUI testing (e.g. Java Swing, capture/replay tools)
Web applications (using ASP.NET, JSP, servlets, Ajax):
Tests could be created to check the HTML output of the code, but that doesn’t
really test that the HTML code itself is properly displayed within the browser.
Distributed objects (e.g. EJB) deployed on application servers
Code running on different types of machines and interacting with a
complex environment: e.g. communication servers, middleware
servers, database servers, content management systems, web
interfaces, etc.
Event-based reactive systems, multi-threaded applications
Embedded systems

Page 16 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

TDD strategy for GUI testing

The more code you can make testable the more reliable the system
will be.
Divide the code into appropriate components that can be built,
tested, and deployed separately.

Build most of the functionality (business logic, services) outside
the context of the user interface code using TDD.
Let the user interface code be just a very thin layer on top of
rigorously tested code. I.e. build as much functionality as possible
outside the GUI.

Again, this "good" basic architecture style of
a clear separation between business logic and
user interface is NOT new and is already well
known for a long time: e.g. 3-tier architecture. PersistencePersistence

Business LogicBusiness Logic

PresentationPresentation

Page 17 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Lesson 3 – TDD and innovation (1)

Not always 100% possible in real life
Is it an enemy of innovation and invention?

Example:
Invention of the car
by Carl Benz and Gottlieb Daimler
in 1886

Only 70 years later:
Invention of the crash test
by Mercedes-Benz in the fifties.
Systematic crash tests
since 1959.

Page 18 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Lesson 3 – TDD and innovation (2)

Not always 100% possible in real life
Example Software technologies (e.g. object-orientation (OO), web
technologies, aspect-oriented programming (AOP), grid computing):
When looking back in history we can see that first there was the idea, vision
and invention of these new software technologies, then later people thought
about needed strategies, methods, and tools for testing them.
Example Architectural and design patterns:
These patterns claim to contain innovative approved best practices.
Here again the patterns have been invented first (or some have been
reinvented based on already known knowledge). Later people started to think
about how to test a specific design pattern, i.e. also design patterns have not
been developed in a core TDD manner.
Example Testing tools:
What’s about all the innovative testing tools we get from the commercial testing
tool industry? Do you think these tools are usually developed in a TDD
manner? I don’t …

Page 19 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Lesson 4 – TDD and non-functional requirements

Not always 100% possible in real life
Non-functional requirements: performance, usability, etc.

Example: Security (Ref. James Whittaker)

Intended
Behavior

Actual
Behavior

Traditional
Bugs

Most Security
BugsCorrect and Secure

Behavior

Many Non-Functional
Bugs

Page 20 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Lesson 5 – Cost efficiency and predictability

Think about cost efficiency again …
What about continuously changing early requirements and architectural
prototypes rework in testing?
Find the right balance in your project …

Not enough in real life
Test cases created using a test-first approach or generated from
(always incomplete) requirements / design are never enough
Developers tend to think in terms of "happy day" scenarios;
typically invalid test cases are left out
Do not miss the investigative mission of testing (deliver information)
You cannot predict everything

use approaches like exploratory testing as well
Decisions made during implementation won't be well-tested by tests
exclusively created upfront

Page 21 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Experiences (1)

TDD increases visibility and importance of testing.
TDD needs changes in development:
process, people (including management!), tooling.
TDD results in a closer cooperation of testers and developers.

Question from developers:
If doing test-first can I skip to write specifications anymore?

Sorry, no.
You need to specify the big picture in some way.
The specifications will be different if going the TDD way.
Specifications will have higher quality and will be testable at all.
Specifications will be more realistic in terms of what can be built.

Page 22 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Experiences (2)

Question from developers:
Why can’t I write my unit tests concurrently or right after my code?

From experience we know that often this is NOT done, i.e. really
doing this takes even more discipline than writing the tests first

If testability is not designed into the code then some things will be
considered "not testable (especially with unit tests)"

Completely ignore the evolutionary design benefits

Tests won’t be as good: not writing tests that lead the developer to
the result but only testing to show what is there / has been done

Page 23 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Experiences (3)

Questions from developers:
Why do we need 99% code coverage?
Why is 60% (code) coverage not enough?
Which level of (code) coverage is required?

If I always write adequate tests first and then only the necessary
piece of implementation code (using the simple design approach)
then I will automatically get a very high level of (code) coverage.
Otherwise it seems that the used TDD approach can be improved …

Page 24 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Experiences (4)

Question from developers:
How do I test private member functions?

From a technical point there are different answers dependent on the
used programming language (e.g. friends in C++, reflection in Java)

In core TDD this question is NOT allowed, i.e. it does not make
sense, because in TDD we first have the designed and implemented
test and then do some implementation for this test.
I.e. the details of the implementation do not matter so much …

Page 25 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

TDD – Changes (Ref. IBM Rational Unified Process)

Traditional

Test-first design But, why does the
test execution happen
so late …?

Page 26 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Example for a test workflow visualizing TDD

Test-driven development is often used in the context of
an iterative / incremental, agile development process
but TDD should not be restricted to it

Definition iteration n

Design

Coding

Unit test

Integration test

System test preparation

System test execution

Smoke testing

Iteration n

Pre-built delivery

Page 27 April 23, 2009 © Siemens AG, Corporate TechnologyPeter Zimmerer, CT SE 1

Summary

TDD = Test-first design ⊕ test-first implementation ⊕ refactoring

TDD is possible and strictly recommended on every test level,
not only for unit and acceptance testing (preventive testing):
Let testing drive your development and maintenance at all!

TDD needs changes in development: process, people, tooling.
TDD results in a closer cooperation of testers and developers.

TDD is neither 100% possible nor sufficient in real-world projects.
TDD does not completely replace conventional "afterwards"
software testing: so, do test-first as well as test-second.

The right project specific balance is the key for cost efficiency.

If not already done then start with TDD tomorrow!!!

⊕

