
Page 1

Addressing Performance
Throughout the Life Cycle

Mike Koza - Subject Matter Expert
Compuware Corporation

Page 2

Agenda
This session will address performance in the
following life cycle areas:

Requirements Gathering
Development
Test

Page 3

The IT Challenge
Building quality applications takes commitment and
dedication from the start

Planning Coding Testing Production

Go Live

DebuggingPlanning Coding Testing Production

Go Live

Debugging

Traditional QA approach – validation after code-complete
With release deadlines fixed, testing is usually cut short
Heroic QA efforts are remarkable; they seldom produce what is needed
Applications go into production failing to meet the needs of the business
Instead, quality must be engineered into the application from the onset

Page 4

The IT Challenge

Page 5

Traditional Performance Testing Approach
Expected…

Actual…

Page 6

What can be done in
Requirements Gathering?

Page 7

The Solution
Most Requirements focus strictly on application Functionality

Be sure to capture NON functional requirements
Ensure that requirements include key Performance SLAs
Identify key business transactions
Detail response times for key business transactions
Data Requirements

Page 8

Identify Critical Business
Transactions

Performance Testing is NOT functional Testing!!

Things to think about:

Frequently used Transactions
Performance Intensive Transactions
Business Critical Transactions

Page 9

Performance Goals
Performance Goals are difficult to capture and quantify

Get into habit of capturing performance goals early

Try capturing performance goals in a subjective way first
Example: Not any slower than release 10.1

Then quantify the performance goal
Example: Baseline the release to be compared against previous

release or competition

Use actual users and a prototype to quantify key business
transactions

Page 10

Identify and Develop Test
Data Early

Performance Tests Require Large amounts of data

Things to think about:

Uniqueness of Test Data
Volume of Test Data
Source
Sterilization Required?
Testing can begin with early builds of the application

Page 11

Document User Transaction
Mix

Page 12

Response Time SLA
Login less than 10 seconds
All other page response times less than 8 seconds

Break down overall transactions into smaller pieces

Overall Transaction response time less than 20 seconds
Based on broadband bandwidth

Application Concurrency SLA
600 concurrent end users
Server Resource Utilization SLA
Less than 50% measured as CPU, Memory, Network Utilization

and Disk I/O

Performance Requirements

Page 13

Workshop #1
Instructor Guided

On Line Bookstore
Performance Requirements

Page 14

What can be done in
Development?

Page 15

The Solution
Build processes in development to test early and often

Don’t wait until code is passed over to QA; create tests in dev
More testing cycles lead to higher quality better performing code
Mandatory Code Reviews
Test assets begin to grow in development, then hand off to QA
Reduce overall cost of finding and fixing defects early in SDLC

Page 16

Code Reviews
Not checking in defects improves quality and performance

Industry data suggests that code reviews are very effective in
removing defects
My experience shows few development teams perform Code
Reviews

“Formal design and
code inspections
average about 65%
in defect removal
efficiency.”

“Software Quality: Analysis and
Guidelines for Success”

Caper Jones

“Peer reviews of
software will catch
60% of defects.”

Institute of Electrical and Electronics
Engineers

Page 17

Code Reviews
Types

E-mail pass around reviews
Over-the-shoulder reviews
Tool-assisted reviews
Formal inspection
Pair programming

Source: Best Kept Secrets of Peer Code Review, Jason Cohen

Page 18

Code Reviews
Best practices

Make peer code review mandatory
Note who reviewed the code in check-in comments
Knowing a peer is going to review all check-ins forces
developers to write better code
Explaining and walking through code helps
developers understand their code better
Helps cross-train team members in different
components

Page 19

Begin to Understand Performance Issues
in Development

Consider using Profilers to understand the impact of memory, CPU, and
wait time during application development

Problems are identified as they are introduced, instead of being found in
QA

Page 20

Code Coverage

Performance Issues LOVE to lurk in untested code!
Pinpoint the portions of an application left unexecuted during testing
Exclude areas of non-concern (i.e. testing frameworks)

How well have I tested my application?
Am I willing to assume the risk of un-tested code?

Page 21

Code Coverage
Merge sessions to present a clear picture of testing progress over time
Discover stability of code base
Ensure areas that have been changed have been tested as well

Page 22

The Most Difficult Step
Reporting quality status

Many profiling
tools allow you to
export the data
they collect

Combine the data
that is most
important to your
organization into a
report

Page 23

Case Study – Insurance Company

Page 24

This insurance company was enhancing a large,
mission-critical application

Adding new functionality and re-architecting a very stable and
reliable legacy system
First release missed initial release date
Once deployed, this release contained many quality problems

Current Situation

Page 25

Solution was deployed in a phased approach
Unit and functional tests were captured on a daily basis as code
was developed
Automated build ran nightly
Defects were reported to development for next day fix

Positive results were realized on next release
Next release was deployed on schedule with minimal defects
Estimated savings of $2M to $8M in avoided rework and support
costs

Solution and Results

Page 26

Solution and Results

Page 27

What can be done in Test?

Page 28

Why Load Testing ALONE is Not Enough

NOT ENOUGH INFORMATION
Only delivers general response
time, throughput or server metrics
Does not identify where bottlenecks
are, across environment or inside
application
Doesn’t get to the root cause of the
problem
Leads to finger-pointing

NOT TIMELY
You have to wait until after
load testing to understand
whether you have a problem

RESULT…
Missed delivery dates
Poor-quality
applications
High-end resources
involved in resolving
problems and waiting
until the end of testing
Costly/unnecessary
infrastructure changes
to fix problems

Page 29

PREDICTION:
Are you ready to Load Test
Predict performance
under varying conditions
Identify impact of network on
application from multiple
locations
Pinpoint bottlenecks
across application tiers
Fix code prior to
conducting load testing

TROUBLESHOOTING:
Deeper analysis during load
test
Pinpoint application
performance and memory
issues DURING the Load Test
Perform fewer application
retests

What makes for a better Load Test?

Page 30

Case Study - Online Banking

Page 31

Setting the scene

Online banking arm of large corporate finance
house
Urgent requirement to validate existing
infrastructure capacity and to investigate capacity to
handle further growth
Limited time to execute

Page 32

Performance Goals
Response Time SLA

Login less than 10 seconds
All other page response times less than 8 seconds
All transaction response times less than 20 seconds
Based on broadband bandwidth

Concurrency SLA
Support 600 concurrent end users

Server Utilization SLA
Server utilization < 50% measured as CPU, Memory and Disk I/O

Page 33

Load testing alone won’t identify hidden problems
Bank Data Center

Web Servers

App Servers

DB Servers

External Users

Internal Users

WAN
Sensitivity

Bad SQL

Slow Methods

Insufficient Capacity

Contention Issues

Page 34

Profile – Predicting WAN sensitivity

Increase in response time of 11 seconds when
connecting over T1 link with 50ms latency

Page 35

Profile – Bad SQL Performance
SQL call taking in excess of 13 seconds
to complete

Page 36

Profiling Identifies hidden problems BEFORE
the Load Test

Bank Data Center

Web Servers

App Servers

DB Servers

External Users

Internal Users

WAN
Sensitivity

Bad SQL

Slow Methods

Insufficient Capacity

Contention Issues

Page 37

Load Testing – Transaction performance

Concurrent users

Elapsed timeTransaction response time

Concurrent SLA: 600 users

Response time SLA: < 20 seconds

Transaction performance exceeds response time SLA

FAIL!!
Response Time

Page 38

Load Testing – Server performance

Concurrent users

Elapsed time

Web server CPU %

Concurrent SLA: 600 users

Server CPU SLA: < 50 %

Web server CPU utilization breaches SLA

FAIL!!
Insufficient Capacity

Page 39

Load Testing – Inside the Application
Analysis inside the JVM and CLR

Slow performing method
impacting response time
and web server CPU

FAIL!!
Slow Method

Page 40

Load Testing – Inside the Application
Analysis inside the JVM and CLR

Memory not being
released

FAIL!!
Memory Leak

Page 41

Load Testing – Transaction performance

Concurrent users

Elapsed timeTransaction response time

Concurrent SLA: 600 users

Response time SLA: < 20 seconds

Transaction performance remains below response time SLA

SUCCESS!!

Page 42

Load Testing – Server performance

Concurrent users

Elapsed time

Web server CPU %

Concurrent SLA: 600 users

Server CPU SLA: < 50 %

Web server CPU utilization remains below SLA

SUCCESS!!

Page 43

Summary
Testing Early ,Often and Automatically allows IT to build quality
into the application from the earliest phases of the development life
cycle, rather than attempting to test it in after the fact

This approach to finding defects early allows the business to
realize value from the application from the time it is put into production

Page 44

Q&A

