

Functional Testing with
Open Source Software

Quest 2009

Chris Kaufman
April 2009

P2 Olenick & Associates 2009

Functional Testing of Equity Clearing System

» Testing began in February 2005 and is still
being used

» Testing framework has since been reused on
three other projects

» Framework components
» Continuous build system
» Automated build and test
» Unit test with additions to support

Server-side in-container testing
Improved test reporting
XML verification

P3 Olenick & Associates 2009

An Open Source Functional Testing Case Study

Putting the pieces together

» Background
» Testing Framework
» Using a Unit Test Tool for Functional Testing

» Test Planning
» Test Practice
» Test Infrastructure

» Reflections

P4 Olenick & Associates 2009

Project Background

Why try JUnit?

P5 Olenick & Associates 2009

The Situation

» Our client was developing a Java-based
clearing system for equities and derivatives
» The system was based off of existing software which

had some support for scripting which was used for
legacy functional testing

No future development of scripting commands was
planned
Scripting commands wouldn’t cover any new
functionality

» The development team was adopting unit-testing for
development of new tests

» The client had no automated functional testing tools
» The majority of the functionality was message based

Messages came in and out through queues
implemented as database tables

P6 Olenick & Associates 2009

The Situation (Continued)

» Our client wanted an automated
functional/regression test
» That was cost effective
» That could allow for development and test at

multiple sites (a licensing consideration)
» That could test the majority of end-to-end

functionality, but did not necessarily have to test the
GUI

The GUI was mostly used for reporting and to manually
perform functionality that was also handled by external
systems through the data interfaces

» That could be implemented by a QA team with mixed
technical skills

P7 Olenick & Associates 2009

Technology

» Application Server
» Windows 2003 Server (2008 Current)
» BEA Weblogic 8.1 (9.2 Current)
» Java 1.4 (1.5 Current)

» Database Server
» Windows 2003 Server (2008 Current)
» SQL Server 2000 (2005 Current)

P8 Olenick & Associates 2009

System Block Diagram

Positions

Risk

Settlement

Money
and Security

Loans

Accounts

Products

Prices

Assets and
Banking

Trades

Allocations

Margin Rates Prices

Margin Calls

Coverage

Reference Data

Collateral

Settlement
Messages

Loan
Information

Clearing System

Admin GUI

P9 Olenick & Associates 2009

The Question: Could JUnit Be Used?

» Although not designed for functional testing it
provided a means to:
» interact with the system
» verify results of those interactions

P10 Olenick & Associates 2009

Tool Analysis

YesYesLeverage existing
script commands

Built in Possible with
HttpUnit,
HTMLUnit, etc.

GUI testing

Simple ScriptingHarder, but
developers can
help

Learning curve

Expensive –limited
licensing

Free – Unlimited
licensing

Cost

Commercial ToolOpenSource JUnit

P11 Olenick & Associates 2009

Decision: Try JUnit

» Once the decision was made to try using JUnit
we needed to
» Determine how to use a unit test tool for functional

testing
» Determine how to structure our testing
» Determine how to get the team members with no

Java skills started with JUnit

P12 Olenick & Associates 2009

Testing Framework

How the technology fits together

P13 Olenick & Associates 2009

Tools

» CruiseControl – Continuous integration
» Apache Ant – Build tool
» JUnit – Unit test tool
» JUnitEE – J2EE JUnit test runner
» Cactus – Framework for server side unit

testing
» XMLUnit – Extends JUnit with assertions for

xml

P14 Olenick & Associates 2009

CruiseControl

» CruiseControl is both a continuous integration
tool and an extensible framework for creating
a custom continuous build process.

» It includes dozens of plugins for a variety of
source controls, build technologies, and
notifications schemes including email and
instant messaging.

» A web interface provides details of the current
and previous builds.

Source: cruisecontrol.sourceforge.net

P15 Olenick & Associates 2009

Apache Ant

» Apache Ant is a software tool for automating
software build processes.

» Ant is implemented using the Java language,
requires the Java platform, and is best suited
to building Java projects.

» Ant uses XML to describe the build process
and its dependencies.

Source: ant.apache.org

P16 Olenick & Associates 2009

JUnit

» JUnit is a unit testing framework for the Java
programming language.

» Created by Kent Beck and Erich Gamma, JUnit
is one of the xUnit family of frameworks that
originated with Kent Beck's SUnit (for
Smalltalk)

» Source: www.JUnit.org

P17 Olenick & Associates 2009

JUnitEE

» JUnitEE provides a TestRunner which outputs HTML and a
servlet which can be used as an entry point to your test
cases. Building your test harness as a standard J2EE web
application means:

» Your tests are packaged conveniently into a .war file which
can easily be moved between servers; you can leave the
.war file in the main .ear file and simply avoid enabling the
test web application on the production server.

» Your test classes will be dynamically reloaded by the app
server (assuming your server supports this).

» Your test cases look just like your production code, and can
use the same beans (or whatever) you use as a facade for
your EJBs

Source: http://www.JUnitee.org/

P18 Olenick & Associates 2009

Cactus

» Cactus is a simple test framework for unit testing
server-side java code (Servlets, EJBs, Tag Libs,
Filters, ...).

» The intent of Cactus is to lower the cost of writing
tests for server-side code. It uses JUnit and extends
it.

» Cactus implements an in-container strategy, meaning
that tests are executed inside the container.

Source: jakarta.apache.org/

P19 Olenick & Associates 2009

XMLUnit

» XMLUnit allows assertions to be made about
» The differences between two pieces of XML
» The outcome of transforming a piece of XML using

XSLT
» The evaluation of an XPath expression on a piece of

XML
» The validity of a piece of XML
» Individual nodes in a piece of XML that are exposed

by DOM Traversal

Source: xmlunit.sourceforge.net

P20 Olenick & Associates 2009

Using a Unit Test Tool for Functional Testing

How does the paradigm fit?
How does it need to be adjusted?

P21 Olenick & Associates 2009

How to Functional Test with a Unit Test Tool

» Examine unit test principles
» Decide how they apply to functional testing
» Which can be kept?
» Which must be modified or discarded?
» What needs to be added to meet functional test

needs?

P22 Olenick & Associates 2009

Unit testing principles

» Test the smallest unit of functionality (in Java
a method)

» Tests can be run independently
» Each test does its own setup
» Tests are isolated to the unit under test through

stubs or mocks of other classes
» Each test does its own teardown (returns the system

to its starting state)

» Write test first before code

P23 Olenick & Associates 2009

Unit Testing Principles Applied to Functional Test

» Test smallest unit of functionality
» Tests should be as focused as possible.

» Make tests as independent as possible
» Failure of any two tests should be as independent as

possible.
Result of any test should not depend on other tests
having run
This is constrained by time dependencies
Since these are not unit tests, there can be blocking
defects

» Each test does its own setup
» Test suite or test launcher does initial system setup
» Each test does its own setup
» Some setup can be shared

P24 Olenick & Associates 2009

Unit Testing Principles Applied to Functional Test

» Test teardown
» Instead of returning system to initial state, return it

to operating state.
» As an example, this meant reopening any message

gateways that had been closed due to errors.

» Write test first, then code
» A significant chunk of development had been done

before we started so we didn’t even try this
» Once we got to customer acceptance testing, we

were able to write tests to reproduce customer
reported defects before they were fixed by
development.

P25 Olenick & Associates 2009

Notable Differences

» With functional testing, some JUnit tests are
not “tests” they are simply test “steps”
» Setup – loading data
» Processing – running an intermediate process which

is not directly being tested

» Some JUnit tests may have more than one
result
» Each test can only report pass/fail
» Error message can include multiple failure messages
» Inside test JUnit asserts are caught, failure messages

concatenated, and at end of test failure is thrown
with list of failures

P26 Olenick & Associates 2009

Test Planning

Fitting our test planning to the
testing paradigm

P27 Olenick & Associates 2009

Test Organization

» Assigned numeric range to test conditions for
each function area. E.g.,

» 0001000-0001999 Position management
» 0002000-0002999 Account management
» 0003000-0003999 Product management
» 0004000-0004999 Settlement
» Etc.

P28 Olenick & Associates 2009

Test Cases

» All test cases recorded in common format
» Automated tests incorporate test ID into data (account

name, comments, ID, phone number, etc.) when ever
possible. It makes tracking down problems easier.

T+1

T

Test
Day

Trade
rejected,
Error
message…

Trade
accepted,
position
updated…

Expected
Result

NoControlled
Account trade
of type X for
future date

0001001

YesControlled
Account trade
of type X for
current day

0001000

AutomatedTest ConditionTest ID

P29 Olenick & Associates 2009

Test Data

» We created base test data for the system:
Brokers, Accounts, Securities, Prices, Margin
Rates, Users, etc.

» We used those only in tests where we didn’t
» change or delete the definition of the item
» Need to keep and verify separate totals

» For each functional area we planned how we
would separate data where we would make
changes or verify totals

» Each functional area was assigned ranges of
data to use.

P30 Olenick & Associates 2009

Code and Data Files

» We elected to organize our tests under a
separate directory under our project

» Tests were organized by functional area and
named Sys0001001test.java
» Where 0001001 is the test number

» Data files were organized by message type
and named Sys0001001-1.xml
» Where 0001001 is the test number
» And –1 is the step of the test

» Verification files were named Verify0001001-
n.xml following the same model as data

P31 Olenick & Associates 2009

Test Practice

Making the tests work

P32 Olenick & Associates 2009

General Form of Tests

» Simple Test
» Load a message into a queue
» Wait for message to be processed
» Check database for expected result

» Most tests consisted of many messages
» Create a broker
» Create a trading account
» Load a trade
» Allocate the trade
» Etc.
» Check results

P33 Olenick & Associates 2009

Achieving Test Independence

» Data independence
» Structure your test data so that a failure of one test

is less like to cause other tests to fail.
» Tests involving calculations were separated by

creating new accounts for each test.

» BUT, tests are related by time
» In a equity clearing system there are events that

happen on day T (the day of the trade), and on
subsequent days, T+1, T+2, etc.

» Tests that can happen on day T can be run
independently of each other

» Tests that run on day T+N rely on N-1 days of
clearing being run prior to the test

P34 Olenick & Associates 2009

Multi-day Tests

Test1
» Test1 DayT Setup
» Day T End-of-Day

processing
» …
» Test1 DayT+N Setup
» Test1

Test2
» Test2 DayT Setup
» Day T End-of-Day

processing
» …
» Test2 DayT+N Setup
» Test2

Some tests have setup, processing and verification that
span multiple days of processing. In the basic stand-
alone test all these steps are part of the same test. In
the multi-test suites these had to be broken up into
different tests.

P35 Olenick & Associates 2009

Multi-Day Tests Combined

» Day T Setup
» Test 1 Day T setup
» Test 2 Day T setup

» Day T End-of-Day processing
» …
» Day T+N Setup

» Test 1 Day T+N setup
» Test 2 Day T+N setup

» Test 1
» Test 2

P36 Olenick & Associates 2009

Integration of Tests into Suites

» New tests were written stand-alone
» Once they passed, they were integrated into

the regression test
» For each Day T+N test we setup two test

cases
» Test001001 and Test001001a
» The “a” version of the test included all setup from

prior days

» As the time grew to execute the regression
suite we realized we needed a quicker way to
validate builds, so we created a subset of tests
that we used as a smoke suite.

P37 Olenick & Associates 2009

Test Infrastructure

Beyond Open Source, what did we
need to build

P38 Olenick & Associates 2009

Test Utilities

Utilities were written to handle the most
common tasks
» Load a message into a queue
» Check to see if a message was processed
» Verify database
» Perform functions usually handled through GUI

Run batch jobs
Open/close queues

P39 Olenick & Associates 2009

Database Verification

» To simplify test writing for QA testers with
limited programming experience we wrote a
custom verify method that took one argument
an xml file that described the verification to be
done. That way our tests looked like.
» LoadMessage(filename, messagequeue);
» WaitForQueueEmpty(messagequeue);
» VerifyDatabase(filename)

P40 Olenick & Associates 2009

Database Verification

File consisted of query and results, with
columns pipe delimited. Multiple rows could
be returned, but an order by clause was
needed on sql for repeatable results

<?xml 1.0>
<verify

sql=“select col1, col2, col3 from table1 where
col4=expectedvalue order by col1”>

<result>val1|val2|val3</result>
<result>valx|valy|valz</result>

</verify>

P41 Olenick & Associates 2009

Database Verification

Data from one database table could also be
verified against another by running two
queries and comparing results.

<? xml 1.0>
<verifydb

sql1=“select this, that from table1”
sql2=“select this, other from table2” />

P42 Olenick & Associates 2009

File Verification

We also wrote a generic file verification that would
compare a file against expected results. The xml
control file included or exclude rows based on regular
expressions, and transformed the resulting rows based
on a pattern match

<? xml 1.0>
<filecompare filename=“filename”>

<include>regexp</include>
<exclude>regexp</include>
<match>regexp<match>
<result>1234abc90</result>
<result>3456xyz89</result>

</filecompare>

P43 Olenick & Associates 2009

Developing Tests Without (New) Coding

» Once we had our utilities complete we could
write the majority of our test with boilerplate
code.

» The majority of the effort was spent
developing test message files, and test
verification files.

» The members of our team with coding
experience took on tasks where new utilities
needed to be developed.

» The rest of the team worked on the bulk of the
testing which concentrated on data and results

P44 Olenick & Associates 2009

Reflections

How did it turn out?
What did we learn?

P45 Olenick & Associates 2009

Planned Benefits

» The test framework and verification methods
were ported to several other projects

» We could refactor software with confidence
that we could be assured it still functioned
properly

» HTTPUnit was added for verification of GUI
screens on one of those projects
» The particular mix of tools we had did not let us use

HTMLUnit or other higher level unit test

P46 Olenick & Associates 2009

Unexpected Benefits

» Our messages that were output to other
systems were also xml messages. When we
started verifying them we looked to see if
there was a unit test tool for xml.
» There was, it was called XMLTest
» In less than two days we integrated it and could

begin writing verification tests for tags or attributes
in an xml message

P47 Olenick & Associates 2009

Unexpected Benefits

» When we needed to do some performance
testing, we already had a framework for
inserting messages into queues. It was
relatively simple to create a test case that
read files from a directory and put them in the
queue based either on a fixed messages per
second or a min and max number of
unprocessed messages to allow in the queue.

» This unit test could be run on the same or a
different machine.

P48 Olenick & Associates 2009

Robustness of Solution

» Original Application being tested ran on:
» Java 1.4.2
» Weblogic 8.1
» SQL Server 2000

» In 2008 it was ported to
» Java 1.5
» Weblogic 9.2
» SQL Server 2005

After upgrading to a newer version of JUnitEE
everything worked, except some expected
results had to be changed because of how
zero values were returned from the database.

P49 Olenick & Associates 2009

Problems Unique to Open Source

» Most open source packages are built on other
open source packages
» We encountered problems with incompatible versions

of common jars
» The impact

We could use HTTPUnit to write low-level tests
But HTMLUnit or
Canoo failed.

» When we upgraded to Java 1.5 and new versions of
all our test software we lost the ability to nicely
format in html our test results from JUnitEE

» The problems were no worse or limiting than
problems I have experienced with commercial
software

P50 Olenick & Associates 2009

Future Directions

» Some ideas of how our framework could be
improved
» Distinguish between setup and verification tests for

reporting
» Fail an entire test run under certain conditions

If end-of-day processing fails, all subsequent tests are
suspect

» Smart test-runner framework
Each test could include prerequisite steps
Each test could include constraints (cannot run after)
User could select a handful of tests and all required
setup and prerequisite steps would be scheduled and
run

