
Testing in the Model-Based 
Development World 

A case study of what it really takes to use MBD

David Cook, CSTE & Dr. Feng Zhu, PhD., CSTE
Boston Scientific CRM, Saint Paul, MN



2

Overview

We will discuss what is needed to implement testing in a 
model-based development (MBD) environment

Laying the Foundation

Framework Development

Test Development

Formal Verification

Costs & Benefits

Final Insights



3

Project Background

Complex medical device
• High regulatory scrutiny on process and safety

Highly complex software system
• ~2000 system requirements
• ~130 different modeled features
• ~5000 individual test cases
• 200,000+ lines of code (embedded)



4

Laying the Foundation

Common Architecture
• Auto-generation of code header files
• Code generation not necessary

Firmware Verification Support
• Verification test bus

– Significant events (includes watchpoints)
– Messages
– Status changes
– Debug notification

Product Line Engineering
• Support for varying device feature sets
• Ability to selectively test based on the variation model



5

Laying the Foundation

Tooling and Infrastructure
• Test systems that are device-equivalent

and a test execution framework
• Verification behavior analyzer
• Automated model vs. firmware comparison
• Test script IDE

Organizational Support
• Full support from mid- and upper-management
• Team of developers to put together the tools



6

Framework Development: 
Isolating Failure modes

Test Station Support
• Networked test station pool created
• Test capability configuration
• Dynamic testing software loading
• Sharing testing resources among projects

Behavioral Comparison Error Analysis
• Comprehensive real-time behavior comparison
• Reporting mismatches automatically
• Auto and manual analysis

Syncing to the Real World
• Addressing timing drifting
• Isolation of real behavioral issues
• Root cause identification of behavioral violation



7

Framework Development: 
Tracking Common Problems

Infrastructure Support for Regression Execution
• Test job management
• Test submission and execution monitoring

Issue Reporting
• Automated reporting 
• Profiling regression issues by type, feature, or testing phase
• Reports become input to Analysis Activity

Issue Analyzing
• Common issue tracking
• Known issue mapping
• Automated analysis using issue patterns



8

Framework Development: 
Schedule and Time-Table

Typically, the project schedule may look like this:
With, MBD the schedule changes:

Analyze

Design

Implement

Test

Analyze

Design

Implement

Test

Specify Tools

Develop Tools

Debug Tools

Validate

And, in terms of the framework you have effort:

This slide does intend to in any way promote or endorse the waterfall model,
no waterfalls were harmed as a result of the development described herein



9

Test Development: Early Test 
Development

Gaining the Knowledge
• Early involvement in Requirement analysis
• Expertise in reading the model and prepare for testing

Using the Model
• Preliminary model testing
• Develop high level test cases
• Find requirement issue early

Pitfalls to Starting Early
• Requirement/Model continuously in flux
• Need good model turnaround time
• Plan for formal architecture update/build/release cycles

– Many teams depend on the architecture for varying needs



10

Test Development: Test Station 
Integration

FW versus Model
• Timing difference between model and FW execution
• Test system injected issues
• Test update needed

Proving Scenarios
• Correctness of scenario must be established
• Additional tooling development

Exceptions to using Model as Oracle
• Non-modeled behaviors
• Low-level hardware mechanism (sensors, telemetry, A/D, etc)
• Exceptional failure conditions the test system cannot expose



11

Formal Verification: Establishing the 
Process

New Process Required
• Testing component creation and release
• Testing environment formalization
• Fully reproducible configuration
• Effectiveness of collaborated team work

Focus on Real Issues
• Identification of test system issues
• Identification of repeating issues from regression to 

regression
Set up Communication
• Work to be done
• Avoid duplication of work on issues with same root cause
• Known issue communication
• Progress 



12

Formal Verification: Validation of Tools

Validation typically happens near the end
• Satisfy regulatory requirement
• Master validation plan
• Tool dependency clearly mapped
• Only validated tools are used in formal verification

Model validation
• Cost is high
• Requires requirements experts
• Mostly manual

– Opportunities for automation



13

Formal Verification: Execution and 
Reporting

Formal Team Formation
• Training
• Specialized roles 
• Qualification of team members 

Dry Run
• One or two dry runs before formal execution
• Dry run focus on process effectiveness

Group analysis helpful
• “War room” allows team interaction and knowledge sharing

Monitoring and reporting
• Checking for regression completion
• Checking for analysis completion



14

Cost and Benefits

Cost of Infrastructure

Cost of Quality

Benefit of Lean Testing

Benefit of Re-Use



15

Cost of Infrastructure

One-Time Costs
• Specification and development of tools (framework)
• Determining what new processes and procedures are 

needed
• (re-) Training the team

Maintenance Costs
• Maintenance and update of model/architecture
• Tools updates as architecture is enhanced

Tools
• Modeling tool may be a financial investment



16

Cost of Infrastructure

One-Time Costs
40+ %

Maintenance Costs
10-12%

Tools
Tests

Tools
Tests



17

Cost of Quality: Meeting Regulatory 
Needs

Traceability
• Web-based asset management
• Incorporate product line variations

Validation of the Model
• Cross-functional activity

Validation of the Framework Tools
• Dedicated team
• Followed regulatory procedures

Education of regulatory auditors
• New concept may require new submission information



18

Benefit: Economy of Lean Testing

Regression Speed and Frequency
• Fast regression turn around makes regression a less critical 

factor in regression decision

What-If Testing
• Provide quick response to configuration changes thanks to 

automated regression process
• Different configuration parameters can be changed, tweaked 

to suit special testing goals. 

Isolating Failures
• Regression rerun with parameter changes allows for easy 

isolation or confirmation of failures, without test, or target 
change. 



19

Benefit: Reuse

Quality
• We set and achieved a higher standard for test development
• Tests reported more interaction behaviors

Asset reuse
• Test cases are applicable across products
• 90-95% Reuse with no changes
• Assets need change due to requirement change

– Services, controller etc.

Knowledge capture
• Scenario checkers
• Pattern matchers



20

Conclusion

Original goals:
• Provide support for engineering decision making and 

communication of decisions
• Improve requirements V & V through the use of the 

executable requirements model
• Facilitate extensibility and reuse through the use of the 

reference architecture 
• Focus on safety and the ability to incorporate fault tolerant 

designs

Other beneficial results
• Improved quality of testing
• Capability to do “what if” testing easily
• Greatly improved speed of regression (think “Lean”) 



21

Conclusion

Absolute “Musts”

• Focus on really good requirements up front

• Use spiral development

• Leverage the common architecture

• Plan to spend money on tools 

• Plan for a dedicated verification debug team on first pass

• Plan for model integration testing



22


